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Bragg spectroscopy of a strongly interacting Fermi superfluid
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Theoretical predictions for the dynamic structure factor of a harmonically trapped Fermi superfluid near the
Bose-Einstein condensate–Bardeen-Cooper-Schrieffer (BEC-BCS) crossover are compared with recent Bragg
spectroscopy measurements at large transferred momenta. The calculations are based on a random-phase (or
time-dependent Hartree-Fock-Gorkov) approximation generalized to the strongly interacting regime. Excellent
agreement with experimental spectra at low temperatures is obtained, with no free parameters. Theoretical
predictions for zero-temperature static structure factor are also found to agree well with the experimental results
and independent theoretical calculations based on the exact Tan relations. The temperature dependence of the
structure factors at unitarity is predicted.
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Ultracold Fermi gases of 6Li and 40K atoms near Feshbach
resonances provide a new paradigm for studying strongly
correlated many-body systems [1]. At low temperatures, they
display the intriguing crossover from a Bose-Einstein conden-
sate (BEC) to a Bardeen-Cooper-Schrieffer (BCS) superfluid
[2]. In the unitarity regime at the cusp of the crossover,
a superfluid with neither dominant bosonic nor fermionic
character emerges that exhibits universal properties that might
be found in other strongly interacting superfluids [3,4], such as
high-temperature superconductors or nuclear matter in neutron
stars. This new superfluid has already been investigated
intensively [1,2], leading to several milestone observations,
some of which still defy theoretical understanding. Here we
present a quantitative description of the recent two-photon
Bragg spectroscopy measurement for this new superfluid [5].

Theoretical challenges in describing the BEC-BCS
crossover arise from its strongly correlated nature: there is
no small interaction parameter to set the accuracy of theories
[6]. Significant progress has been made in developing better
quantum Monte Carlo simulations [7–10] and strong-coupling
theories [6,11–14], leading to the quantitative establishment
of a number of properties. These include equation of state
[6,7,12,15–17], frequency of collective oscillations [18,19],
pairing gap [10,20], and superfluid transition temperature
[9,21]. However, other fundamental properties, such as the
single-particle spectral function measured by rf spectroscopy
[22,23] and the dynamic structure factor probed by Bragg
spectroscopy [5], are not as well understood.

In this Rapid Communication, we show that a random-
phase approximation (RPA), generalized to the strongly
interacting regime, is able to describe quantitatively the
observed Bragg spectra for harmonically trapped 6Li atoms
at large transferred momenta. This surprising result indicates
that the RPA captures the essential physics and constitutes a
reasonable approximation for the strongly interacting region
of the BEC-BCS crossover, particularly the low temperature
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range accessed by most experiments. The RPA method has
previously been used to study the dynamic structure factor
[24] and collective oscillations [25] of weakly interacting
Fermi superfluids. A dynamic mean-field approach, identical
to the RPA but based on kinetic equations, was developed to
investigate structure factors [26] and collective modes [27] of a
uniform, strongly interacting Fermi gas. At finite temperatures,
structure factors at the crossover were also studied using a
pseudogap theory [28].

Our main result is summarized in Fig. 1, which shows
the normalized experimental Bragg spectra [5] along with the
RPA predictions. Excellent agreement is found, with no free
parameters.

We begin by outlining briefly the RPA using the Hamilto-
nian (hereafter h̄ = 1),

H =
∑

σ

∫
drψ+

σ (r)

[
− ∇2

2M
− µ + VT (r)

]
ψσ (r)

+U0

∫
drψ+

↑ (r)ψ+
↓ (r)ψ↓(r)ψ↑(r), (1)

which describes a balanced spin-1/2 (σ = ↑,↓) Fermi gas
with mass M in a harmonic trap VT (r), where fermions with
unlike spins interact via a contact potential U0δ(r − r′). The
total number of atoms N is tuned by the chemical potential
µ and the bare interaction strength U0 is renormalized by the
s-wave scattering length a, 1/U0 + ∑

k M/k2 = M/(4πa). In
the superfluid phase, we treat the system as a gas of long-lived
Bogoliubov quasiparticles interacting through a mean-field
and consider its response to a weak external field of the form of
δV ei(qr−ωt). The essential idea of the RPA is that there is a self-
generated mean-field potential experienced by quasiparticles
[29], associated with the local changes in the density distribu-
tion of the two spin species, δU = U0

∫
dr(

∑
σ δnσψ+

σ ψσ +
δmψ+

↑ ψ+
↓ + δm∗ψ↓ψ↑), where δnσ ≡ δnσ (r,t) and δm ≡

δm (r,t) are the normal and anomalous density fluctuations,
respectively, which must be determined self-consistently. In
the linear approximation, the self-generated potential δU plays
the same role as the perturbation field when we calculate
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FIG. 1. (Color online) Quantitative comparison of theoretical
and experimental Bragg spectra [see Eq. (6)]. The RPA prediction
(lines) agrees well with the experimental data (empty squares) [5] at
the BEC-BCS crossover, with no free parameters. The spectrum is
normalized so that the area below the curve is unity. The frequency is
measured in units of the recoil energy of the atoms (see text).

the dynamic response using a static BCS Hamiltonian as the
reference system [24,25,29]. This leads to coupled equations
for density fluctuations. The linear response is characterized
by a matrix consisting of all two-particle response functions:

χ ≡

⎧⎪⎨
⎪⎩

〈〈n̂↑n̂↑〉〉 〈〈n̂↑n̂↓〉〉 〈〈n̂↑m̂〉〉 〈〈n̂↑m̂+〉〉
〈〈n̂↓n̂↑〉〉 〈〈n̂↓n̂↓〉〉 〈〈n̂↓m̂〉〉 〈〈n̂↓m̂+〉〉
〈〈m̂n̂↑〉〉 〈〈m̂n̂↓〉〉 〈〈m̂m̂〉〉 〈〈m̂m̂+〉〉
〈〈m̂+n̂↑〉〉 〈〈m̂+n̂↓〉〉 〈〈m̂+m̂〉〉 〈〈m̂+m̂+〉〉

⎫⎪⎬
⎪⎭ ,

where 〈〈ÂB̂〉〉 is the Fourier transform of the retarded function
−i�

(
t − t ′

) 〈[Â(r,t),B̂(r′,t ′)]〉. For simplicity, we abbreviate
χσσ ′ ≡ 〈〈n̂σ n̂σ ′ 〉〉, χσm ≡ 〈〈n̂σ m̂〉〉, χσm̄ ≡ 〈〈n̂σ m̂+〉〉, χmm̄ ≡
〈〈m̂m̂+〉〉, and so on. By solving the coupled equations for
density fluctuations, the standard RPA response function χ

can be expressed in terms of the static BCS response function
χ0 [25],

χ = χ0[1̂ − U0χ
0G]−1, (2)

where G = δ(r − r′)[σ0 ⊗ σx] is a direct product of two Pauli
matrices σ0 and σx and the unit matrix 1̂ = δ(r − r′)[σ0 ⊗ σ0].
The dynamic structure factor Sσσ ′(ω) is related to the nor-
mal density response function by the fluctuation-dissipation
theorem,

Sσσ ′(ω) = − 1

π

1

[1 − exp (−ω/kBT )]
Im χσσ ′ (ω) , (3)

and the static structure factor is given by Sσσ ′ =
(2/N )

∫ +∞
−∞ dωSσσ ′(ω). In the weak-coupling regime, Eq. (2)

can be solved by calculating χ0 for a thermal average of BCS
quasiparticles [24,25].

Here, we extend the RPA to the strongly interacting regime
with an arbitrarily large scattering length a, by properly
renormalizing the bare interaction strength U0 and the two
response functions χ0

mm̄ and χ0
m̄m, which was found to be

suitable at the BEC-BCS crossover [14,30]. The ultraviolet
divergence of these two functions [25] is canceled exactly by
the small value of U0, when the momentum cutoff goes to
infinity. In homogeneous systems, a careful account of the

divergent terms in the inverted matrix of the RPA equation (2)
leads to a concise expression for the response functions:

χ↑↑ = χ0
↑↑ −

[
2χ0

↑↓χ0
↑mχ0

↑m̄ + (
χ0

↑m

)2
χ̃0

mm̄

+ (
χ0

↑m̄

)2
χ̃0

m̄m

] / [
χ̃0

mm̄χ̃0
m̄m − (

χ0
↑↓

)2
]
, (4)

and

χ↑↓ = χ↑↑ − χ0
↑↑ + χ0

↑↓, (5)

where the response functions with a tilde, i.e., χ̃0
mm̄ ≡ χ0

mm̄ +∑
k M/k2 − M/(4πa), become free from any ultraviolet

divergence. The above equations were previously obtained
by Combescot and collaborators using kinetic equations (see
Eq. (B22) in Ref. [27]). Note that, we use a Leggett-BCS
ground state without inclusion of the Hartree-Fock term in
the quasiparticle spectrum. Therefore, in the BCS regime our
treatment does not account for the leading interaction effect as
in Refs. [24,25]. At the crossover, however, it does capture the
dominant pairing gap. Note also that, the RPA method accounts
for single particle-hole excitations. Higher correlations such
as multi-particle-hole excitations are neglected.

In the presence of a harmonic trap, the renormalization
procedure becomes cumbersome because of the discrete
energy levels. It is convenient to use a local density approxi-
mation (LDA) that treats the system as a collection of many
homogeneous cells with local chemical potential [2], µ(r) =
µ − VT (r), where VT (r) = M(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)/2 is the

harmonic trapping potential. The LDA treatment is valid for
a large number of atoms such as N ∼ 105 as in experiments.
It has been used extensively in studying the static density
profile of either atomic Fermi, Bose gases [31] or Bose-Fermi
mixtures [32]. In the nuclear context, it has also been used
to calculate the dynamic response function [33]. At a given
temperature and scattering length, we solve the Leggett-BCS
equation with local chemical potential for the local pairing gap
and calculate the static response function χ0, then solve the
local RPA density response functions using Eqs. (4) and (5),
and finally obtain the total RPA responses by integrating over
the whole trap. In our calculations, the interaction strength is
characterized by the dimensionless parameter, 1/(kF a), where
kF = √

2MEF is the Fermi wave vector and the Fermi energy
is EF = (3Nωxωyωz)1/3.

Figure 2 shows the zero-temperature spin parallel, antipar-
allel, and total dynamic structure factor at a transferred wave-
vector q = 5kF in the BEC-BCS crossover, calculated using
the above RPA procedure for a trapped Fermi gas. In addition to
a broad response at the recoil energy ωR = q2/(2M) = 25EF

caused by resonant scattering of atoms, a much narrower peak
develops at about ωR/2 with increased coupling. The peak,
commonly referred to as the quasielastic peak in the literature,
is found by the recent theoretical calculation [26] and the
observation of Bragg spectroscopy [5]. This is simply the
Bogoliubov-Anderson phonon mode of a Fermi superfluid
at large wave-vectors, which evolves continuously into a
Bogoliubov mode of molecules toward the BEC limit [26].
The molecular peak is mostly evident in S↑↓ as there is no
background atomic response. Measurements of S↑↓ may also
help establish the presence of Fermi superfluidity [28].
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(a) (b) (c)

FIG. 2. (Color online) Zero temperature spin parallel S↑↑(q,ω)
(dashed lines), antiparallel S↑↓(q,ω) (dot-dashed lines), and total
dynamic structure factor S(q,ω) = 2[S↑↑ + S↑↓] (solid lines) across
the BEC-BCS crossover: 1/kF a = 0.5 (a), 0.0 (b), and −0.5 (c). The
negative weight in S↑↓ at about the recoil energy is consistent with
the exact sum rule

∫
ωS↑↓(q,ω)dω = 0 [28].

To make a quantitative comparison with the experimental
spectra, we calculate the momentum imparted to the Fermi
cloud, the quantity measured directly in the Bragg scattering
experiment [5,34]:

P (q,ω) ∝ 1

πσ

∫ ∞

−∞
dω′S(q,ω′)sinc2

[
ω − ω′

σ

]
, (6)

where sinc(x) = sin(x)/x and the energy resolution σ =
2/τBr is set by the experimental Bragg pulse duration (τBr =
40 µs) [5]. We find σ ≈ 0.68EF ≈ 0.027ωR . Figure 1 presents
a comparison of the experimental data (open squares) with the
RPA predictions (lines) for the Bragg spectra normalized in
such a way that

∫
P(q,ω)dω = 1. With no free parameters,

our RPA predictions agree well with the experimental results
in the unitarity regime (1/kF a = 0.0 and 0.2) and BEC regime
(1/kF a = 0.8). The agreement on the BCS side (1/kF a =
−0.5), however, becomes worse. The quantitative agreement
around unitarity is very compelling, since the RPA was
assumed to be unreliable in the (strongly interacting) regime of
large pair fluctuations. Our comparison indicates that the RPA
is able to describe the dynamical properties of the BEC-BCS
crossover, at least at zero temperature and large momenta. High
order multi-particle-hole excitations, absent in the RPA theory,
seems to be negligibly small at large momenta. More studies
are needed to understand this. Note finally that, the somewhat
poorer agreement at 1/kF a = −0.5 can be attributed to the
mean-field shift, which is ignored in the RPA but dominates
for sufficiently weak interactions.

The agreement between the RPA theory and the Bragg
experiment is further confirmed by comparing the spin an-
tiparallel static structure factor at zero temperature, as reported
in Fig. 3. Experimentally, the static structure factor can be
measured model-independently by invoking the f -sum rule
[35]; while, theoretically, it can be determined very accurately
using the exact Tan relations and the known equation of state
[36]. It is evident from Fig. 3 that the RPA prediction fits very
well with the experimental data, as well as the independent
theoretical result based on the Tan relations. In particular, the
two theoretical predictions are nearly indistinguishable on the

FIG. 3. (Color online) Quantitative comparison between theory
and experiment for the zero temperature static structure factor
across the crossover. For S↑↓, with no free parameters our RPA
prediction (plus symbols) agrees well with the experimental data
for S(q,ω) − 1 (solid circles with error bars) [35] and an independent
theoretical result based on the exact Tan relations (solid line) [36]. At
large transferred momentum, S↑↑ � 1. The inset highlights the RPA
prediction with respect to the Tan-relation result in the BCS regime.

BEC side with 1/kF a � 0. However, they differ toward the
BCS limit, as highlighted in the inset. The discrepancy is
consistent with Fig. 1(d) where the RPA predicts less pairing
and hence lower S(q).

A more stringent test of the RPA theory may be provided
by the temperature or momentum dependence of dynamic
and static structure factors. In Fig. 4, we predict the dynamic
and static structure factor as a function of temperature for a
trapped Fermi gas at unitarity, which will be investigated in

(a) (b)

FIG. 4. (Color online) Temperature dependence of the dynamic
(a) and static (b) structure factor for a unitary Fermi gas in
harmonic traps at q = 5kF . According to the Tan relation, S↑↓(q) �
128ζ/[175ξ 1/4(q/kF )] at T = 0 [35], where ξ and ζ are the universal
parameters at unitarity [17]. The symbols in (b) show predictions
using theoretically or experimentally determined ξ and ζ : ENS
experiment (square) [17], Gaussian pair fluctuation theory (circle)
[12], and self-consistent theory (triangle) [37]. Here, Tc � 0.37TF =
0.37EF /kB .
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future experiments. As anticipated, the pair (atomic) response
increases (decreases) with decreasing the temperature, leading
to a monotonic decay of the static structure factor.

The present RPA theory is most likely valid only in a narrow
temperature window near T = 0. With increasing temperature,
the pairing gap decreases and thermal pair fluctuations in-
crease. The RPA will eventually break down at a characteristic
temperature TRPA( <∼ Tc). This is evident in Fig. 4(b) where the
spin antiparallel static structure factor vanishes unphysically
above the superfluid transition temperature.

At low transferred momenta, quantum fluctuations are
likely to increase and the RPA theory will become less reliable.
To overcome these limitations, we could use a Cooperon-
mediated interaction (many-body T -matrix) to replace the bare
contact interaction [38], or use the phenomenological Landau
parameters for the mean-field shift [39], as determined from
thermodynamic measurements [16] or quantum Monte Carlo
simulations.

In summary, we have used a strong-coupling RPA theory
to calculate the dynamic and static structure factors of a
trapped Fermi gas at the BEC-BCS crossover. The theory
is quantitatively applicable at low temperatures and large
transferred momenta, as confirmed by the excellent agreement
with the experimental Bragg spectra. The RPA theory thus
seems to provide a novel starting point for investigating
dynamic properties of a strongly interacting Fermi gas at finite
temperatures and low momenta.
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Grant No. 10774190.

[1] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[2] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys.
80, 1215 (2008).

[3] T.-L. Ho, Phys. Rev. Lett. 92, 090402 (2004).
[4] H. Hu, P. D. Drummond, and X.-J. Liu, Nature Phys. 3, 469

(2007).
[5] G. Veeravalli, E. Kuhnle, P. Dyke, and C. J. Vale, Phys. Rev.

Lett. 101, 250403 (2008).
[6] H. Hu, X.-J. Liu, and P. D. Drummond, New J. Phys. 12, 063038

(2010).
[7] G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini,

Phys. Rev. Lett. 93, 200404 (2004).
[8] A. Bulgac, J. E. Drut, and P. Magierski, Phys. Rev. Lett. 96,

090404 (2006).
[9] E. Burovski, E. Kozik, N. Prokofev, B. Svistunov, and M. Troyer,

Phys. Rev. Lett. 101, 090402 (2008).
[10] J. Carlson and S. Reddy, Phys. Rev. Lett. 100, 150403 (2008).
[11] Y. Ohashi and A. Griffin, Phys. Rev. Lett. 89, 130402 (2002);

Phys. Rev. A 67, 063612 (2003).
[12] H. Hu, X.-J. Liu, and P. D. Drummond, Europhys. Lett. 74, 574

(2006).
[13] X.-J. Liu and H. Hu, Phys. Rev. A 72, 063613 (2005).
[14] R. Haussmann, W. Rantner, S. Cerrito, and W. Zwerger, Phys.

Rev. A 75, 023610 (2007).
[15] L. Luo, B. Clancy, J. Joseph, J. Kinast, and J. E. Thomas, Phys.

Rev. Lett. 98, 080402 (2007).
[16] S. Nascimbène et al., Nature (London) 463, 1057 (2010).
[17] N. Navon et al., Science 328, 729 (2010).
[18] H. Hu, A. Minguzzi, X. J. Liu, and M. P. Tosi, Phys. Rev. Lett.

93, 190403 (2004).
[19] A. Altmeyer et al., Phys. Rev. Lett. 98, 040401 (2007).
[20] C. H. Schunck et al., Science 316, 867 (2007).

[21] M. Horikoshi et al., Science 327, 442 (2010).
[22] J. P. Gaebler et al., Nature Phys. 6, 569 (2010).
[23] H. Hu, X. J. Liu, P. D. Drummond, and H. Dong, Phys. Rev.

Lett. 104, 240407 (2010).
[24] A. Minguzzi, G. Ferrari, and Y. Castin, Eur. Phys. J. D 17, 49

(2001).
[25] G. M. Bruun and B. R. Mottelson, Phys. Rev. Lett. 87, 270403

(2001).
[26] R. Combescot, S. Giorgini, and S. Stringari, Europhys. Lett. 75,

695 (2006).
[27] R. Combescot, M. Yu. Kagan, and S. Stringari, Phys. Rev. A 74,

042717 (2006).
[28] H. Guo, C.-C. Chien, and K. Levin, Phys. Rev. Lett. 105, 120401

(2010).
[29] X.-J. Liu, H. Hu, A. Minguzzi, and M. P. Tosi, Phys. Rev. A 69,

043605 (2004).
[30] P. Pieri and G. C. Strinati, Phys. Rev. B 61, 15370 (2000).
[31] X.-J. Liu, H. Hu, and P. D. Drummond, Phys. Rev. A 75, 023614

(2007).
[32] X.-J. Liu, M. Modugno, and H. Hu, Phys. Rev. A 68, 053605

(2003).
[33] P. Schuck et al., Prog. Part. Nucl. Phys. 22, 181

(1989).
[34] A. Brunello, F. Dalfovo, L. Pitaevskii, S. Stringari, F. Zambelli,

Phys. Rev. A 64, 063614 (2001).
[35] E. D. Kuhnle et al., Phys. Rev. Lett. 105, 070402 (2010).
[36] H. Hu, X.-J. Liu, and P. D. Drummond, Europhys. Lett. 91,

20005 (2010).
[37] R. Haussmann, M. Punk, and W. Zwerger, Phys. Rev. A 80,

063612 (2009).
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